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Abstract. We present practical approaches for symmetry-adapting valence bond 
wave functions, with emphasis on the CASVB method. Significant savings in the 
computat ional  effort become available, both in relation to the application of the 
Hamil tonian operator  and to the reduced number  of variational parameters. 
Results are presented for modern  VB representations of CASSCF descriptions of 
benzene and diborane. 
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1 Introduction 

Although it is s tandard to make use of molecular point group symmetry in modern  
computat ional  codes based on molecular orbital theory, the same cannot be said of 
valence bond calculations that  involve the optimization of nonorthogonal  orbitals. 
Existing schemes for making use of symmetry typically require the use of con- 
strained optimization procedures (cf. Ref. [1]); these do not generally lead to any 
reduction in the computat ional  effort. In this paper we consider some of the issues 
related to symmetry-adapt ing VB wave functions, and we propose practical strat- 
egies in the context of our CASVB approach [2-4].  

After a brief review of the CASVB method in Sect. 2, we discuss in Sect. 3 the 
symmetry adaptat ion of VB wave functions. We then examine, in Sect. 4, modern 
VB descriptions of CASSCF solutions for two highly symmetric systems - benzene 
and diborane. Both examples are of particular interest in this context, because 
some CASVB solutions show a tendency to break symmetry. Finally, we present 
our conclusions in Sect. 5. 

* Current address: Department of Chemistry, Chemistry Laboratory IV, Copenhagen University, 
Universitetsparken 5, 2100 Copenhagen o, Denmark 
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2 The CASVB approach 

Only the main aspects of the CASVB method [2-4] will be outlined here, so as to 
establish the basic definitions and some notation. The approach, which relies on 
the invariance of full CI wave functions to general (non-unitary) transformations of 
the orbitals, has been made available as part of the quantum chemistry package 
M OL P RO [52, in which it is interfaced to an efficient complete active-space self- 
consistent field (CASSCF) program [6]. The current implementation allows not 
only for general modern VB interpretations of CASSCF wave functions, but also 
for fully variational calculations, including the optimization of core orbitals, and 
improved capabilities for analyzing the resulting wave function, such as the 
calculation of derivatives with respect to nuclear displacements. There is little in the 
way of incorporating the CASVB strategy into other packages which feature 
CASSCF codes. 

We consider a full CI expansion with structures written in the form 

~ I  = 5~(  I~ . . . .  X ~ ¢ t ) ,  (1) 

7Ncore doubly where ~b .... describes the Ncore "core" electrons, typically using 1 
occupied orbitals. The q~¢t describe the N "active electrons" and they are construc- 
ted by allowing all possible occupations of the N active electrons in a set ofm active 
orbitals, compatible with total spin S. We have demonstrated previously [4] the 
many advantages associated with using simple Slater determinants, but our ap- 
proach could be applied equally well to spin-adapted configuration state functions 
(CSFs). On the other hand, it is not useful for CASVB calculations to restrict 
oneself to symmetry-adapted functions for spanning the full-CI space. 

A general m x m orbital transformation 0 induces and Nc~ x Nc~ transformation 
T(O) in the structure space, i.e. 

{#} = o = r(O), (2) 
where the { } denoted row-vectors of the orbitals, ~b, or many-electron functions, ~b. 
The effect of T(O) can be realized in a very efficient manner by writing 0 as the 
product of m 2 simple updates of the form 

+ ( 3 )  

This can be achieved, for example, by an LU decomposition of O, and the cor- 
responding transformation of the many-electron space is then simply realized by 
successive applications of the excitation operators 

^~ .~ -uv,  (4) 

without explicit construction of 1"(0) [4, 7]. 
The efficient realization of the structure transformation, Eq. (2), is central to the 

CASVB approach. As discussed elsewhere [2-4] it can be used for the optimization 
of VB wave functions, either independently or as a means of generating valence 
bond interpretations of CASSCF wave functions. In order to achieve this, we express 
the VB function to be optimized as a linear combination of transformed structures 

= x ¢,, ), ( 5 )  ~JVB core VB 

I 

in which the {45 vB} are defined in terms of the nonorthogonal orbital set 
{~bvB}, constructed by transforming the original full CI space (with orthogonal 
orbitals). The number of non-zero structure coefficients, ci, will usually be much 
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smaller than the dimension of the full CI space, so that such an expansion can be 
made very compact without sacrificing much of the quality of the wave function. 
These cs may of course be optimized freely, but one may wish to put some constraints 
on them so as, for example, to ensure correct symmetry of the overall wave function. 

For  generating modern valence bond representations of CASSCF wave func- 
tions it is useful to consider two basic families of criteria for optimizing ~gvB. In the 
first, we maximize the overlap with a previously optimized CASSCF wave function: 

( ~cAsl ~ B )  
SvB = (~vBI ~vB) 1/2' (6) 

Very high values of SvB may typically be achieved, such that on the order of 99 % of 
the CASSCF wave function may be expressed in simple VB form. In the second 
criterion, which may be useful for CASSCF wave functions for the lowest state of 
a given symmetry, we minimize the expectation value for the energy 

(%BI/~l~evB) 
EvB -- (7) 

In both cases, the quantities are optimized with respect to the orbital parameters 
defining the transformation O from {~b cAs} to {~bvB}. We may choose to treat the 
structure coefficients in Eq. (5) as further free parameters. Alternatively, they could 
be extracted directly from the (transformed) CI vector according to 

evB = ev~ T(O- 1)cc~, (8) 

in which P w  sets to zero the unwanted structure coefficients. These considerations 
lead to four distinct optimization criteria that we will investigate here: 

CASVBI: Maximize SvB with respect to O and structure coefficients. 
CASVB2: Maximize Sv~ with respect to O, extracting CvB from the trans- 

formed CASSCF CI vector as in Eq. (8). 
CASVB3: Minimize EvB with respect to O and structure coefficients. 
CASVB4: Minimize EvB with respect to O, extracting evB from the trans- 

formed CASSCF CI vector as in Eq. (8), 

In the present work we consider mostly the case in which the active part of ~UvB 
is built from a single spatial configuration of N singly occupied orbitals, as in 
spin-coupled theory [8]: 

~v,~ = ~¢(~ .... 4', 02 . . -  'b,+O~M). (9) 

The N-electron spin function OSNM may be expressed in, and transformed between, 
various convenient spin bases, the most commonly used being those of Kotani, 
Ruiner and Serber [9]. For  tPvB of this form, PvB (Eq. (8)) sets to zero the cs for all 
structures in which an active orbital is doubly occupied (the so-called "ionic 
structures"). 

3 Symmetry adaptation of VB wave functions 

We address in this section the problem of ensuring the correct symmetry of VB 
wave functions. Symmetry breaking may occur in all areas of ab initio quantum 
chemistry, but in VB theory it raises problems that are quite distinct from those 
that arise in the majority of MO-based methods. We discuss here two different 
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approaches that we believe will be the most useful in practical calculations. 
Ensuring correct symmetry is not only important from the point of view of 
obtaining a realistic wave function, but the possible associated reduction in com- 
putational effort may be of great importance. 

The molecular point group 15, of order g, comprises all transformations/~ of the 
nuclear coordinates that commute with the electronic Hamiltonian. We require trial 
wave functions to form bases for irreducible representations, F (° (dimension di), of 15: 

/~{~1, . . . ,  ~va,} = {h~l, . . . ,  ~a,}D(')(R) V R  ~ qJ. (10) 

Of course, for the important special case in which ~ is real and di = 1, this reduces to 

/ ~  = Z(°(R)~g VR ~ 15, (11) 

with characters 7f)(R) = __ 1. 
Perhaps the conceptually simplest and most general way of ensuring that a 

wave function has the correct symmetry is by use of the projection operator 

P(" = (d~/g) ~ X(°(R) * R. (12) 
R 

This is a standard group-theoretical result (see, for example, Ref. [10]). The 
advantage of adopting a projection operator approach is that Eq. (12) may be 
applied to a wave function of any form to ensure a symmetry-pure result. We note 
that a VB wave function constructed in this way will, in general, be multiconfigura- 
tional, and the defining orbitals may be grouped into sets related by symmetry. 

The direct symmetry adaptation of combinations of VB structures presents 
several difficulties, the main reason being that an orbital generated as/~qS~ will not 
in general belong to the defining set {~b}. An attractive alternative is therefore to 
apply/3(o in the MO basis, in conjunction with two structure transformations, i.e. 

c(0 = ~r(o- 1)e~,~ o r ( O ) c w .  (13) VB 

Here ,,(0 is the CI vector in the basis of VB structures, projected such that it 
~VB 

transforms as the irreducible representation F (°. The practicality of such an 
approach relies on the fact that ensuring the correct symmetry for an MO CI vector 
is a relatively trivial matter, particularly if only Abelian groups are considered. 
Each individual MO can be assumed, without loss of generality, to belong to an 
irreducible representation, and the symmetry of the total spatial configuration can be 
determined by a simple multiplication of the characters for the orbitals. Applying the 
projection operator in Eq. (12) then reduces to setting to zero the coefficients for all 
CSFs (or determinants) that belong to unwanted irreducible representations. 

Because the CASVB approach involves expressing ~VB in terms of structures 
formed from orthogonal molecular orbitals (the transformation given in Eq. (13)), it 
is relatively straightforward to implement the strategy outlined above. The sym- 
metry projection may then be applied after the optimization procedure is com- 
pleted, so as to remedy a solution that may be symmetry-broken. Alternatively, it 
may be applied during the optimization procedure simply by substituting 

~e(0 = p ( 0 ~  w (14) 
VB 

for ~UVB in Eqs. (6) and (7). This would then give the optimal symmetry-pure wave 
function. Both of these alternatives will be considered in Sects. 4 and 5. 

We turn now to a second approach for ensuring the correct overall symmetry: 
the introduction of constraints on the form of the wave function. It is convenient to 
retain a projection operator formalism, and the condition on the VB wave function 
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is then that it must be invariant under/3(o. Furthermore, we will assume here that it 
is expanded in only a very restricted number of spatial configurations. It is well 
known that the complete set of spin eigenfunctions for N electrons always form 
a basis for the permutation group ~N. This leads to the finding, as has been 
discussed in detail by Gerratt [11], that the most generally applicable way of 
ensuring the correct overall symmetry is to require that the operations/~ induce 
only permutations of the defining orbital set: 

_~c~, = ~,(R)dp,, V R  ~ (5, (t5) 

where ~,v(R) = ___ 1 for real orbitals. In practice, it is sufficient to satisfy Eq. (15) for 
the generators of (5. 

Ensuring fulfilment of the orbital conditions, Eq. (15), is usually quite straight- 
forward. The only orbital parameters retained in the optimization procedure are 
those associated with the symmetry-unique orbitals, which generate the full {q~VB} 
by successive applications of the group operators. The remaining parameters may 
be eliminated by standard procedures. If a symmetry-unique orbital is not per- 
muted by a symmetry operator, i.e. 

/~q~, -- ~,,(R)q~,, (16) 

then the matrix representation of/~ (which in general is non-symmetric) can be 
diagonalized, and ~b z expanded in only the real, right-hand eigenvectors which have 
the eigenvalue ~ ( R ) .  The number of free parameters associated with variations of 
this orbital will then be N~i~ - 1, where Nei~ is the number of acceptable eigenvec- 
tors and the normalization condition imposes one further constraint. 

Besides the orbital conditions set out in Eq. (15), we must also put the following 
simple requirements on the structures defining the wave function: 

1. The list of spatial configurations must be closed under the permutations induced 
by the symmetry operators. For example, if g~ induces the interchange 1~2,  then 
the configuration 11 2 3 implies also the configuration 22 1 3. 
2. I fR  is the matrix representation of/~ in the structure basis, 1 then the structure 
coefficients must be formed as a linear combination of real right-hand eigenvectors 
of this matrix with eigenvalues )~(°(R) (as defined in Eq. (11)). 
It is again sufficient to consider only the generators of the point group. 

We have in this way two very different strategies, either of which may be used to 
ensure a symmetry-pure wave function during the optimization procedure. They 
may also be applied in combination: constraints could be used that are appropriate 
to a subgroup of the full molecular point group or that relate only to a subset of 
orbitals, and the projection operator then applied to ensure correct symmetry of 
the final wave function. We shall investigate various possibilities in Sects. 4 and 5. 

4 Results 

The calculations described in this section were all carried out using the CASSCF 
[6] and CASVB [3, 4] modules in MOLPRO [5], or with our own spin-coupled 
code [12]. 

1 The existence of this matrix representation is ensured by the fulfilment of requirement 1, combined 
with the fact that/~ induces a simple permutation of the orbital set. 
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108.31 pm 
139.64 pm C1 ~ 

~'X 
Fig. 1. The geometry, orientation, and atom numbering 
adopted for benzene 

Table 1. Energies for benzene. Details of the various calculations are 
given in the text 

Calculation E [hartree] (E -- EcAs) 
[millihartree] 

SCF - 230.764056 72.77 
SC cAs - 230.829233 7.59 
SC -230.829331 7.49 
SC + CI -230.836729 0.09 
CASSCF - 230.836822 (0) 

4.1 Benzene 

The geometry, orientation, and a tom numbering adopted for C6H6 (O6h sym- 
metry) are as shown in Fig. 1. For  C/H we used correlation consistent pVTZ basis 
sets [13], (lOs5p2d/5s2p) contracted to [4s3p2d/3s2p], but in order to limit the 
size of the problem, the polarization functions were replaced with just a single 
Cartesian d Gaussian on carbon with a = 0.8, and a single p Gaussian on each 
hydrogen with c~ = 1.0. 

A "6 in 6" CASSCF calculation was performed for the rc electrons, keeping the 
36 o- electrons in an (optimized) closed-shell core. The correlation energy retrieved 
by this wavefunction amounts  to 72.8 millihartree (see Table 1). The natural 
orbitals for the rc system resemble the MOs in the well-known SCF picture; in order 
of decreasing occupation numbers they are: lain, two components of lelg, two 
components  of le2u, and 1big. The CASSCF calculations were actually carried out 
in the Abelian subgroup D2h , in which the active MOs ~01-q06 can be classified as 
lblu (transforming as Z), lbeg(XZ), lb3g(YZ), lau(XYZ), 2blu(Z) and 2bag(YZ). 

The spin-coupled (SC) description of benzene has been reported previously in 
several publications [-14]. In the present calculation, the SC orbitals were expanded 
in all functions of rc symmetry, i.e. those which are antisymmetric with respect 
to reflection in the molecular plane. For  ease of comparison, the core orbitals for 
the SC wave function were taken from the CASSCF calculation, without further 
optimization. The SC solution thus obtained consists of six singly occupied, 
nonorthogonal  orbitals, equivalent by successive C6 rotations (see Fig. 2). These 
orbitals are essentially localized C(2p~) functions, but they exhibit some delocaliza- 
tion towards the neighbouring carbon atoms in the ring. It  is useful to label these 
orbitals according to the carbon atoms with which they are associated. The 
coupling of the associated electron spins is conveniently expressed in the Rumer 
basis. Rumer functions 1 and 4 correspond to Kekulb structures whereas the others 
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C C 

C H 

H 

Fig. 2. Symmetry-unique SC orbital for 
benzene. Orbital contours are plotted in 
the plane Z = 1 bohr (left), and in the 
plane parallel to Y = 0 and containing 
C1 (right) 

Table 2. Weights of the Rumer spin functions in the total spin function for the various orbital sets in 
benzene 

OK1 ~K2 ~D1 ~D2 ~D3 

SC 40.60% 40.60% 6.27% 6.27% 6.27% 
CASVB 1 36.53 % 36.53 % 8.98 % 8.98 % 8.98 % 
CASVB2 32.92% 32.92% 11.48% 11.33% 11.33% 
CASVB2 (s) 32.37% 32.37% 11.75% 11.75% 11.75% 
CASVB3 40.62% 40.62% 6.26% 6.26% 6.26% 
CASVB4 32.09% 33.57% 11.48% 11.38% 11.48% 
CASVB4 (s) 32.56% 32.56% 11.63 % 11.63% 11.63% 
CASVB1 (E) 40.96% 40.96% 6.03% 6.03% 6.03% 
CASVB1 (C) 31.37% 31.37% 12.42% 12.42% 12.42% 

Note: (s) signifies symmetry-constrained solutions. CASVB1 (E) and CASVB1 (C) are the energy- 
optimized and CASSCF spin-coupling coefficients, respectively, based on the CASVBI orbital set 

(functions 2, 3 and 5) correspond to para-bonded or Dewar structures. The KekuI~ 
structures dominate the total wave function (see Table 2): these two spin functions 
each have Chirgwin-Coulson weights (co) of 40.6%. 

About 0.0022% of each SC orbital was found to lie outside the CASSCF active 
space, i.e. to be expanded in virtual CASSCF MOs. This relatively low value is 
likely to be associated with the reduced number of free parameters arising from the 
high symmetry of benzene, and it is reflected in the energy differences seen in Table 
1. Augmenting the spin-coupled wave function with all possible ionic structures 
within the active space ("SC + CI") gives a wave function within 0.09 millihartree 
of the CASSCF value. This difference can be attributed solely to the difference 
between the active spaces. Likewise, performing a spin-coupled calculation using 
only the active CASSCF MOs as expansion functions ("SC cas'') leads to an energy 
0.1 millihartree higher than the SC energy. The energy differences related to the 
difference in the active spaces are thus of a similar order of magnitude. They are 
much smaller than the difference associated with the exclusion of ionic structures 
(about 7.5 millihartree). 

We now turn to the modern VB interpretations of the CASSCF wave function. 
For  all four CASVB criteria, the SC picture was reproduced extraordinarily well, 
as may be seen from Fig. 3. CASVB2 and CASVB4 have been constrained here to 
have the correct symmetry, as discussed later. The overlap integrals (see Table 3) 
are a more sensitive indication of orbital change than the figures, and some 
variation between the sets may be discerned. However, the variations in the 
spin-coupling coefficients listed in Table 2 are mostly related to the mode of 
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Fig. 3. Symmetry-unique benzene 
orbitals for the symmetric CASVBl- 
CASVB4 solutions, plotted in the plane 
Z = 1 bohr 

Table 3. Symmetry-unique overlap integrals for the symmetric orbitals sets in 
benzene 

SC 0.52383 0.02939 - 0.15700 
CASVBl 0.51564 - 0.01664 - 0.21 672 
CASVB2 (s) 0.49919 - 0.07186 - 0.27225 
CASVB3 0.52355 0.02809 - 0.15804 
CASVB4 (s) 0.50056 - 0.04674 - 0.23 127 

structure coefficient optimization, rather than the differences between the orbital 
sets. This can be seen from the spin-coupling coefficients for the CASVBl orbital 
set, which were calculated by maximizing Sv, (first entry in Table 2), minimizing 
EvB (CASVBl (E)), or by projecting the CASSCF wave function (CASVBl (C)). The 
general trend of the weights for the Kekuli: structures, 

was observed for all the orbital sets [2]. This is consistent with the trends in the 
nearest-neighbour overlaps reported in Table 3, as a higher degree of singlet 
coupling is generally associated with larger overlaps. 

The main difference from the SC description was a marked propensity for 
symmetry-breaking in the case of CASVB2 and CASVB4. The two orbital sets are 
shown in Figs. 4 and 5. It  should be noted that both solutions retain some degree of 
symmetry, in the form of o, mirror planes; for CASVB2, this plane contains two 
opposite carbon atoms (C1 and C4 in Fig. 4) whereas for CASVB4 it bisects two 
bonds (Cl-C2 and C4-C5 in Fig. 5). This is most easily verified by examining the 
overlap integrals (Table 4) and the spin-coupling coefficients (Table 2). Both criteria 
extract the spin-coupling coefficients from the transformed CASSCF wave func- 
tion, and it therefore seems most likely that the symmetry-breakingis related to the 
reduced number of degrees of freedom when the spin coupling is constrained in this 
manner. 
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Fig. 4. CASVB2 orbitals of benzene, plotted in the plane Z = 1 bohr 
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Fig. 5. CASVB4 orbitals of benzene, plotted in the plane Z = 1 bohr 

We now examine procedures for symmetry-adapting these solutions. In order 
to ensure the correct overall symmetry by means of constraints, it is sufficient to 
consider the generating symmetry operations dx (reflection plane X -- 0) and C6. 
The analogous  condit ions associated with the dz reflection are of  course fulfilled 
implicitly, because of  the ~ symmetry of the active MOs.  

We consider first the condit ion on ~bl, namely that it must be invariant under 
the dx reflection: 

o 5 ~  = qS~. (18) 
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CASVB2 1 2 3 4 5 6 

1 1 0.58673 
2 1 
3 
4 
5 
6 

CASVB4 
1 1 0.56136 
2 1 
3 
4 
5 
6 

0.05608 -0.24512 0.05608 0.58673 
0.48906 -0.18195 -0.24708 0.16706 
1 0.42168 -0.24581 -0.24708 

1 0.42168 -0.18195 
1 0.48906 

1 

0.09910 -0.21989 -0.04748 0.54559 
0.54559 -0.04749 -0.21989 0.09911 
1 0.44734 -0.16611 -0.21464 

1 0.45757 -0.16611 
1 0.44734 

1 

The matrix representation of dx is already diagonal in the MO basis, with diagonal 
elements 1, - 1 ,  1, - 1, 1 and 1, and so Eq. (18) can be fulfilled simply by expanding 
41 only in MOs q)l, q)3, q)5 and q)6. 

The matrix representation of C6 is more complicated since only MOs 4o a and q)6 
form one-dimensional representations (with characters +1 and - 1  respectively). 
The remaining MOs form two two-dimensional bases, which may be expressed 

and 

(1 
C'6{(P2,(f13} = {~02,(fl3} 1N/,~ 1 ) (19) 

(1 :?) 
C6 q)5} = q,5} . (2o) 

Each of these matrix representations is orthogonal, because ~6 = ~', and the traces 
correspond to the characters of Elg and Ezu in D6h. The signs of the off-diagonal 
elements depend on the (arbitrary) relative phases of the MOs, and so some care is 
required when repeating calculations to ensure consistent phases. Having construc- 
ted the full matrix representation of ~6 in this manner, it is then trivial to construct 
he remaining orbitals by successive rotations, if O t° refers to the ith column of the 
orbital t ransformation matrix, i.e. the expansion of CASVB orbital qS~ in the active 
MOs, then 

0 (i) = C ~ -  1)O(1). (21) 

The structure coefficients may  be constrained by considering the orbital permu- 
tations induced by the C6 rotation: (234561), and the dx reflection: (165432). In the 
case of a ~vR of SC form, this can be achieved by constructing the spin function 
representation matrices for the inverse permutations of electron labels, diagonaliz- 
ing them, and extracting the eigenvectors with eigenvalues Z (i) ( +  1 in this case). To 
satisfy both conditions we simply take the intersection of these two vector spaces. 
In this way, we obtain two linearly independent symmetry-adapted spin functions, 
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Table 5. Values of SvB and EvB for the various orbital sets in benzene. 
(s) signifies symmetry-constrained solutions, (p) the symmetry-projected 
values, and (P) the values where the symmetry-projected wave function 
was optimized (see text) 

SVB EvB 

CASVB 1 0.99546 -- 230.828917 
CASVB2 0.99545 -- 230.828792 
CASVB2 (s) 0.99543 -- 230.828776 
CASVB2 (p) 0.99564 - 230.829106 
CASVB3 0.99517 -230.829233 
CASVB4 0.99517 - 230.829060 
CASVB4 (s) 0.99515 -230.829051 
CASVB4 (p) 0.99529 -230.829241 
CASVB1 (P) 1 -- (8 x 10 -6) --230.836796 
CASVB2 (P) 0.99996 -230.836699 
CASVB3 (P) 1 - (8 x 10 -6) -230.836796 
CASVB4 (P) 0.99996 -230.836702 

most conveniently expressed in the Rumer basis: 

O, = OK, + OK2 (22) 

and 

O b : OD1 -~ OD2 -[- OD3.  (23) 

This outcome is of course intuitively obvious, but more complicated cases will 
require diagonalization of the structure representation matrix. 

Incorporating symmetry constraints thus leads to a vastly simplified problem, 
in which the number of variational parameters is reduced from 34 to only 4 for 
CASVB1 and CASVB3, and from 30 to 3 for CASVB2 and CASVB4. The results 
for CASVB2 and CASVB4 are illustrated in Fig. 3, with numerical values in 
Tables 2 and 3. A further point to note is the extent of the reduction in quality of the 
constrained wave functions, as measured by the decrease of SVB or increase in EvB 
(see Table 5). The symmetry-pure CASVB2 wave function is just 2 x 10-5 lower 
in its overlap with the CASSCF wave function and CASVB4 just 9 micro- 
hartree higher in energy. The small sacrifice in accuracy is clearly more than 
outweighed by the increased simplicity of the solution. 

To shed further light on the nature of the symmetry breaking, the full Hessians 
for the converged symmetry-pure solutions were examined. For  each CASVB 
criterion, there were two very small eigenvalues relating to variations in the orbital 
parameters. In some cases these were positive and in others negative, rendering the 
symmetry-pure solutions unstable. The symmetry breaking in certain uncon- 
strained CASVB descriptions of benzene may thus seem somewhat accidental in 
nature. We note, however, that these features were reproduced with several differ- 
ent basis sets. Changing the basis set did affect slightly the proportion of each SC 
orbital which lies outside the CASSCF active space. 

We turn now to the projection operator defined in Eq. (12). Transforming to the 
CASSCF MO basis and setting to zero coefficients of determinants not belonging 
to the Ag irreducible representation in D 2 h  s e e m s  sufficient for practical purposes, 
and demonstrates the basic features of the approach. We first consider the 
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Table 6. Energies for diborane. Details of the various calculations are 
given in the text 

Calculation E [hartree] (E -- EcAs) 
[millihartree] 

SCF - 52.815220 90.32 
SC - 52.893038 12.51 
CAS B -52.898012 7.53 
CAS A - 52.905543 (0) 

symmetry adaptation of symmetry-broken solutions without further optimization. 
Since the projection operator annihilates only parts of the orthogonal complement 
of the CASSCF CI vector, we must have ~(s) /> SvB. For  the same reason, sym- ~VB 
metry projection is likely to lead to a lowering in energy, although exceptions from 
this rule may occur. It is somewhat surprising that the SvB and EvB values for the 
symmetrized CASVB2 and CASVB4 wave functions (see Table 5) surpass the 
optimal single configuration results (CASVB1 and CASVB3). 

Of course, symmetrization of the CASVB1 and CASVB3 solutions has no effect, 
since these wave functions already have the required symmetry. However, as seen 
above, allowing distortion away from the correct symmetry can lead to better 
values for SvB and EvB. Indeed, very impressive values could be obtained in free 
optimization of the projected wave functions (see Table 5): this can be seen as 
a consequence of restoring the number of variational parameters from 4 to 34 
(CASVB1 and CASVB3) or from 3 to 30 (CASVB2 and CASVB4). As may be 
expected, the orbitals are heavily distorted and the interpretation of the wave 
functions becomes significantly more complex. As such, a full optimization incor- 
porating the projection operator is not to be recommended. 

4.2 Diborane 

For  B2H 6 (Dzh symmetry) we used rBB = 176.65pm, rBn~ = 120pm, rBn~ = 
132.6 pm and L_(B-B-H t) = i21 °, where H t and H b refer to the terminal and 
bridging hydrogen atoms, respectively. For  B/H we employed correlation consis- 
tent pVDZ basis sets [13] consisting of (9s4pl d/4slp) Cartesian Gaussian functions 
contracted to [3s2pld/2slp]. 

Four  electrons were accommodated in (optimized) core orbitals, corresponding 
essentially to the ls z on both boron atoms, leaving 12 valence electrons to be 
described by a "12 in 12" CASSCF expansion. The lowest solution thus found, 
which we denote "CAS A", retrieves 90.32 millihartree of correlation energy 
(see Table 6). In addition, we also investigated a second solution, "CAS B", lying 7.5 
millihartree higher in energy. 

A 12-electron SC calculation, incorporating all 132 allowed modes of spin 
coupling, was carried out with q it°re taken directly from the CASSCF wave 
function. The SC description reproduces the findings obtained with lower levels of 
theory: these include SOPP-GVB calculations [-15] and earlier SC treatments 1-16]. 
The B - H  t bonds are described by B(sp~-type) hybrids overlapping essentially ls 
orbitals on H (see Fig. 6). The corresponding electron spins are to a good 
approximation singlet coupled. Each of the 3-center-2-eIectron bonds in the bridg- 
ing region is best described as follows. One of the orbitals is a deformed ls function 
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Fig. 6. Symmetry-unique spin-coupled 
orbitals for diborane 

o n  H b. The other consists of t w o  "fused" B(spX-type) hybrids pointing towards the 
H b (see Fig. 6). Again the corresponding electron spins are predominantly singlet 
coupled, such that the overall weight of the perfect-pairing spin function is 95.58 %. 

A rather different picture for the bridging region emerges from the CASVB 
interpretations of the "CAS A" solution. We now see a distinctly two-center 
description (see Fig. 7), arising from somewhat deformed B (spX-type) hybrids 
delocalized onto the H b atoms. There are no orbitals associated solely with the 
hydrogen. Furthermore, there is significant symmetry-breaking. The description of 
the B-H t bonds is virtually unchanged from that provided by the SC calculation. 

A symmetry-pure solution can be obtained from the CASVB wave functions 
just described if the upper and lower bridging B(sp~-type) hybrids are made 
equivalent under the d~ reflection. The orbital conditions can then be satisfied 
by considering the generating group elements dx, dy and dz. For the structure 
coefficients, we must diagonalize the structure representation matrices for 
the three permutations (341256789101112) ,  (123478561112910)  and 
(214391011125678) ,  induced by d~, dy and dz, respectively. To ensure the 
simultaneous fulfillment of all three conditions, we take the intersection of the 
three vector spaces spanned by eigenvectors with eigenvalues + 1 (cf. the case of 
benzene). This leads to a reduction in the number of allowed structures from 132 to 
32, in addition to the reduction of orbital parameters from 132 to 25. 

The constrained bridging orbitals are shown in Fig. 8. The loss of accuracy 
upon incorporating symmetry constraints was somewhat larger in this case than 
for benzene: 0.2 millihartree for CASVB1, for example (see Table 7). It is thus no 
longer so clear-cut that incorporating constraints is a satisfactory solution. An 
alternative is to allow a multiconfigurational description of the bridging region. We 
therefore performed a further optimization in which the equivalence between upper 
and lower bridging orbitals was released, and the projection operator invoked 
instead. It seems reasonable to retain the equivalence between B - H  t bonds, as 
well as the left-right equivalence in the bridging region. The resulting orbitals are 
shown in Fig. 9. 
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Fig. 7. Bridging region 
CASVB1-CASVB4 solutions for 
diborane ("CAS A") 

We now address the inconsistency with the spin-coupled solution and, indeed, 
the description that emerges from applying standard localization procedures to 
the SCF MOs. Looking at just the orbitals for the bridging region, it is clear that 
the "CAS A" wave function, and its various CASVB interpretations, transforms as 
Ag + B2g + Blu + B3u whereas those from the SC calculation transform as 
2Ag + 2B3u. As such, the lowest CASSCF solution is incompatible with the tradi- 
tional SC description of the bridging region. The secondary CASSCF wave func- 
tion, "CAS B", with the "correct" distribution of active MOs among the irreducible 
representation lies 7.5 millihartree above the "CAS A" solution. It gives the CASVB 
representations illustrated in Fig. 10: these are very similar to the standard SC 
result. Furthermore, the values for SvB and EvB based on "CAS B" (see Table 8) are 
significantly better than those for the solution lowest in energy. It is clear that the 
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Table 7. Values of SvB and Eva for the various orbital sets 
in diborane ("CAS A") 

SvB Eva 

Fig. 8. Symmetric bridging region 
CASVB1-CASVB4 orbitals for 
diborane ("CAS A") 

CASVB1 0.99571 - 52.889322 
CASVB2 0.99552 -- 52.889201 
CASVB3 0.99557 -- 52.889782 
CASVB4 0.99540 -- 52.889496 
CASVB1 (s) 0.99549 - 52.889112 
CASVB2 (s) 0.99548 -- 52.889148 
CASVB3 (s) 0.99537 -- 52.889443 
CASVB4 (s) 0.99535 - 52.889417 
CASVB1 (p) 0.99590 -- 52.890116 
CASVB2 (p) 0.99556 - 52.889389 
CASVB3 (p) 0.99569 - 52.890316 
CASVB4 (p) 0.99543 - 52.889632 
CASVB1 (sP) 0.99606 - 52.890312 
CASVB2 (sP) 0.99585 - 52.889674 
CASVB3 (sP) 0.99589 -- 52.890791 
CASVB4 (sP) 0.99572 - 52.889966 

Note: (s) signifies the symmetry-constrained solutions, (p) the 
symmetrized values for the simple solutions, and (sP) the combi- 
nation of symmetry constraints and projection operator as de- 
scribed in the text 

" C A S  B "  w a v e  f u n c t i o n  is m u c h  b e t t e r  suited t o  a s ing le  c o n f i g u r a t i o n  S C - l i k e  
i n t e r p r e t a t i o n  t h a n  is " C A S  A".  

W e  n o t e  t h a t  a l so  fo r  "4  in  4 "  C A S S C F  t r e a t m e n t s ,  c o n c e n t r a t i n g  o n  t h e  
v a l e n c e  e l e c t r o n s  a s s o c i a t e d  w i t h  t h e  b r i d g i n g  r eg ion ,  s o l u t i o n  A lies s l igh t ly  l o w e r  
in  e n e r g y  t h a n  s o l u t i o n  B ( - - 5 2 . 8 4 0 0 8 4  h a r t r e e  a n d  - 5 2 . 8 3 8 5 0 8  h a r t r e e ,  r e spec -  
t ively).  C A S V B  i n t e r p r e t a t i o n s  of  t h e s e  t w o  "4  in  4"  w a v e  f u n c t i o n s  p r o d u c e  t h e  
s a m e  r iva l  d e s c r i p t i o n s  of  t h e  b r i d g i n g  r e g i o n  as  d e s c r i b e d  a b o v e .  
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Fig. 9. Bridging CASVB1-CASVB4 
solutions for diborane, optimized with 
the projection operator ("CAS A") 

In the systems we have studied so far [2-4]  it has always been possible to 
construct a CASSCF expansion which has CASVB interpretations that are exceed- 
ingly similar to the SC picture. However, in the case of diborane, the lowest 
solution is incompatible with the simple SC picture; it seems necessary to invoke 
some sort of multiconfigurational description in order to obtain an accurate 
CASYB representation of this wave function. An alternative is to examine instead 
the "CAS B" solution, in spite of its slightly higher energy. A situation with two 
rival CASSCF solutions has also been found for a re-electron treatment of ozone 
[31, but in that  case both solutions had straightforward SC analogues. It  is 
interesting to note, however, that when a linear combination of the two SC-like 
configurations is constructed, it is the one corresponding to the CASSCF with 
slightly higher energy that  dominates the total wave function. 
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Fig. 10. Bridging region 
CASVB1 CASVB4 solutions for 
diborane ("CAS B") 

5 Conclusions 

It seems useful to distinguish between two separate categories of symmetry break- 
ing: cases with a clear underlying physical reason and the more "accidental" cases. 
The classification may in each individual case be somewhat  subjective, but the 
differences in SvB and EvB between constrained and symmetry-broken solutions 
can provide one useful indication. A large increase in EvB upon invoking con- 
straints, for example, would suggest a definite physical reason behind the breaking 
of symmetry. In the case of diborane it seems reasonable to argue that the 
symmetry breaking is a consequence of forcing a single configuration description 
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Table 8. Values of SvB and EvB for the various orbital sets in 
diborane ("CAS B") 

SvB EvB 

CASVB1 0.99862 - 52.892407 
CASVB2 0.99861 - 52.892413 
CASVB3 0.99861 - 52.892450 
CASVB4 0.99860 -- 52.892435 

on the electron-deficient bridging region. For  benzene on the other hand, the 
symmetry breaking is clearly more accidental, depending as it does on the precise 
way in which the optimizations are performed. 

It should be emphasized that fully variational SC calculations for benzene and 
diborane do not break symmetry. One reason why the CASVB descriptions of these 
molecules may exhibit a greater tendency towards symmetry breaking could be the 
constraints inherent in the choice of CASSCF active space, i.e. in the particular 
distribution of active MOs among the irreducible representations. 

To our knowledge, this work represents the first general use of the symmetry 
projection operator (Eq. (13)) in VB calculations that involve the optimization of 
nonorthogonal orbitals. However, a related procedure has been employed for 
degenerate irreducible representations in SC calculations: the various symmetry- 
related spatial configurations are each constructed separately and solution of the 
subsequent secular problem provides eigenvectors with the desired symmetry 
properties. An example of this approach is the construction of the two degenerate 
components of E" for the cyclopropenyl radical [17]. It seems very likely that the 
resulting solutions will prove to be very similar to those obtained by an application 
a posteriori of the symmetry projection operator. 

It is useful to summarize various features of the two approaches that we have 
outlined here for symmetry adapting CASVB wave functions: 

Symmetry constraints: 
- Reduces the number of free parameters, and hence reduces the computational 

effort as well as simplifying the optimization procedure. 
- Retains a simple form for the wave function. 
- Assumes a particular form of solution. 

Projection operator: 
- Preserves the number of free parameters. Hence, gives better values for SVB 

and EvB. 
- Generally complicates the form of the wave function. 

Makes no assumptions as to the form of solution. 

In the case of "spurious" breaking of symmetry, it seems natural to invoke 
constraints, whereas in cases with an underlying physical reason, it may be more 
appropriate to adopt the projection operator approach. However, we cannot 
recommend indiscriminate use of the projection operator, since results thus ob- 
tained, while achieving high accuracy, tend to lose many of the interpretational 
advantages generally associated with a compact VB description. 

As was seen in the examples, introducing constraints can vastly reduce the 
number of variational parameters. This significantly influences performance, such 
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that it may be advantageous to invoke constraints even if this is not actually 
required for convergence to a symmetry-pure solution. This is a consequence of 
a feature of the CASVB procedure that the computat ional  effort per iteration is 
approximately proport ional  to the number  of free parameters in the optimization 
[4]. However, the main problem in applying constraints is that it can be very 
difficult a pr ior i  to make a good judgement regarding the form of the solution. 

It is worth reiterating the many  advantages associated with using an underlying 
basis of symmetry-adapted orbitals, as we have done here. The projection operator  
is very simple to invoke in this formalism. Similarly, the orbital constraints take on 
a very much simpler form than they would do otherwise. Furthermore,  diagonaliz- 
ing the non-symmetric structure representation matrix for orbital permutations 
induced by the generating group elements seems a very straightforward way of 
imposing the proper  constraints on the structure coefficients. 

Applying the Hamil tonian operator  to a full-CI vector was first considered by 
Siegbahn [18], and the most  efficient approach [19] is derived from his original 
algorithm. The reduction in computat ional  effort associated with the utilization 
of point group symmetry is very significant in this scheme. One may loop over 
irreducible representations, applying the Hamiltonian operator only if there are 
non-zero coefficients. Thus, use of symmetry leads to savings even if the CI vector 
is not symmetry-pure,  but there are additional savings if the CI vector can be 
assumed to belong to a given irreducible representation. 

These considerations are, of course, not crucial for CASVB1 or CASVB2, which 
do not involve the Hamil tonian operator, and which are, in any case, computa-  
tionally much cheaper than their energy-based counterparts. As such a practical 
approach seems to be to perform an initial overlap-based optimization as a precur- 
sor for a more expensive energy-based calculation (CASVB3 or CASVB4). The 
form of the overlap-based solution thus obtained will suggest what constraints 
might be appropriate,  and whether a projection operator  should be invoked. 
Support  for this strategy comes from our experience that analogous overlap- and 
energy-optimized wave functions are always in very good qualitative agreement. 

We have presented practical approaches for symmetry-adapting valence bond 
wave functions, with emphasis on the CASVB method. These techniques should 
prove useful for the proper  utilization of molecular point group symmetry in 
various valence bond approaches that involve the optimization of nonorthogonal  
orbitals. 
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